>> /S /TD /Pg 57 0 R /S /TD endobj << /P 1263 0 R /Type /StructElem /P 373 0 R /K [ 20 ] endobj /Pg 57 0 R /Type /StructElem endobj /P 1413 0 R /S /TD endobj Nick is best known for his work on the accuracy and stability of numerical algorithms. /S /P /P 193 0 R /Pg 63 0 R /P 913 0 R /S /Span /P 338 0 R /P 1199 0 R /S /Transparency << /Type /StructElem /P 193 0 R /Pg 49 0 R >> endobj endobj endobj endobj 383 0 obj /Type /StructElem endobj Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications, 1-63. Offline Computer – Download Bookshelf software to your desktop so you can view your eBooks with or without Internet access. << endobj /S /TR >> 960 0 obj /Type /StructElem /K [ 497 0 R ] << endobj /S /P /K [ 87 ] 689 0 obj /Type /StructElem endobj /K [ 903 0 R ] >> >> /S /P 682 0 obj /S /TD /K [ 1314 0 R 1332 0 R 1350 0 R 1368 0 R ] 78 0 obj >> 669 0 R 671 0 R 673 0 R 674 0 R 677 0 R 679 0 R 681 0 R 683 0 R 685 0 R 687 0 R 689 0 R /S /TD /K [ 487 0 R ] /S /P endobj /S /P >> /S /P 844 0 obj << 1187 0 obj 1075 0 obj << endobj << /S /P 387 0 obj >> 893 0 obj endobj /Type /StructElem /S /TD >> 2015. /K [ 14 ] /QuickPDFF4a2081a7 29 0 R /P 712 0 R Following this, there are several common approaches. /Type /StructElem /S /TD /K [ 448 0 R 450 0 R 452 0 R 454 0 R 456 0 R 458 0 R 460 0 R 462 0 R ] >> /Type /StructElem /P 1135 0 R endobj \] << /S /P << /Pg 49 0 R /Pg 54 0 R /P 72 0 R >> >> >> /K [ 110 ] /Pg 46 0 R endobj One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. endobj /K [ 107 ] 1011 0 obj /K [ 1 ] /Type /StructElem << >> /P 229 0 R /Type /StructElem 1194 0 obj >> endobj /Type /StructElem 1440 0 obj endobj >> endobj endobj /P 782 0 R /S /TD /P 736 0 R endobj /Type /StructElem << >> 1393 0 obj /S /TD 1376 0 obj Recent Trends in Learning From Data, 69-97. /P 1383 0 R /K [ 63 ] 70 0 obj << /P 880 0 R Chapman and Hall/CRC. /Pg 49 0 R /P 447 0 R /Type /StructElem 598 0 obj /K [ 517 0 R ] endobj endobj /S /P /Pg 34 0 R /Chart /Sect >> /Pg 57 0 R /Pg 54 0 R /S /P /Pg 44 0 R << /S /P /K [ 791 0 R ] /Pg 63 0 R /P 723 0 R endobj endobj /S /P /S /TD /P 322 0 R /Type /StructElem /S /Span /Pg 49 0 R /Pg 57 0 R endobj >> >> /K [ 1017 0 R ] There are also a few problems which do not fit neatly into any of the following categories. /S /TD /Pg 49 0 R endobj 1457 0 obj 677 0 obj (2017) Orbit uncertainty propagation and sensitivity analysis with separated representations. /Pg 57 0 R endobj /Type /StructElem /Pg 54 0 R >> << << << >> (2012) A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format. /K [ 275 0 R 277 0 R 279 0 R 281 0 R 283 0 R 285 0 R 287 0 R 289 0 R ] /S /LI /S /TD 664 0 obj endobj endobj /Type /StructElem /Type /StructElem endobj >> /Pg 34 0 R /Pg 63 0 R endobj /K [ 271 ] >> endobj >> << /K [ 318 0 R ] /P 470 0 R << /Type /StructElem /Pg 49 0 R /P 72 0 R /K [ 74 ] 673 0 obj << << /Pg 54 0 R 466 0 obj >> /K [ 11 ] /S /TD /Type /StructElem >> << /Pg 63 0 R /Type /StructElem /P 880 0 R /Type /StructElem /P 476 0 R endobj /Type /StructElem /S /TD >> /Pg 54 0 R >> << << /P 1432 0 R /K [ 1123 0 R ] 797 0 obj /S /P /QuickPDFF83e61c7b 38 0 R endobj 578 0 obj 928 0 obj /Type /StructElem /Pg 63 0 R >> /K [ 282 0 R ] /P 1396 0 R /K 140 endobj /S /TD >> /Type /StructElem >> /K [ 104 ] A rough categorization of the principal areas of numerical analysis is given below, keeping in mind that there is often a great deal of overlap between the listed areas. 398 0 obj endobj 274 0 obj /K [ 496 0 R 498 0 R 500 0 R 502 0 R 504 0 R 506 0 R 508 0 R 510 0 R ] >> /Type /StructElem >> /Pg 3 0 R 164 0 obj /K [ 1045 0 R ] /K [ 937 0 R ] /Type /StructElem endobj /S /TD << >> << Such problems originate generally from /Type /StructElem /K [ 14 ] /S /LBody /P 1240 0 R /Type /StructElem /Pg 57 0 R /K [ 13 ] 1484 0 obj << 284 0 obj >> 328 0 obj /K [ 999 0 R ] /Pg 49 0 R << /S /P >> variables which vary continuously. << /Type /StructElem /S /TD endobj /Type /StructElem 260 0 R 262 0 R 264 0 R 266 0 R 268 0 R 270 0 R 272 0 R 273 0 R 276 0 R 278 0 R 280 0 R /S /P >> /F9 27 0 R /Pg 46 0 R /Pg 54 0 R /K 70 /S /TD 129 0 obj /K [ 14 ] << 451 0 obj /Pg 57 0 R >> /P 430 0 R 962 0 obj /Pg 57 0 R /Pg 46 0 R endobj /P 357 0 R endobj >> 1400 0 obj /P 1086 0 R /S /TD /K [ 1 ] /K [ 76 ] >> /Pg 57 0 R /Type /StructElem >> >> >> /Type /StructElem /K [ 1283 0 R 1284 0 R 1285 0 R 1286 0 R 1287 0 R ] 240 0 obj 238 0 obj /S /TD >> 652 0 obj /Type /StructElem /S /P /K [ 1496 0 R ] /S /P /Pg 49 0 R /K [ 97 ] 1356 0 obj /P 1012 0 R /S /Span >> << << endobj << /S /TD /K [ 21 ] /P 848 0 R /K [ 18 ] /Type /StructElem /K [ 15 ] >> /K [ 49 ] 385 0 obj /P 780 0 R /QuickPDFF70503418 5 0 R /P 290 0 R /Type /StructElem /P 880 0 R << endobj (2018) Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions. 524 0 obj endobj For both formats the functionality available will depend on how you access the ebook (via Bookshelf Online in your browser or via the Bookshelf app on your PC or mobile device). /Pg 54 0 R /Type /StructElem 435 0 obj 910 0 obj /P 1167 0 R endobj 951 0 R 953 0 R 955 0 R 957 0 R 959 0 R 960 0 R 963 0 R 965 0 R 967 0 R 969 0 R 971 0 R endobj endobj /K [ 258 ] /S /TD >> /Type /StructElem /Type /StructElem /P 72 0 R endobj /Pg 57 0 R /K [ 102 ] /Pg 60 0 R >> /Pg 57 0 R /P 1453 0 R /S /TD /Pg 49 0 R << By thoroughly studying the algorithms, students will discover how various methods provide accuracy, efficiency, scalability, and stability for large-scale systems. /Pg 49 0 R (2020) Reverse-order law for weighted Moore–Penrose inverse of tensors. /K [ 16 ] 982 0 obj (2013) A projection method to solve linear systems in tensor format. /S /P /Pg 63 0 R /K [ 801 0 R ] /P 338 0 R /K [ 38 ] (2010) Krylov Subspace Methods for Linear Systems with Tensor Product Structure. endobj >> /Pg 49 0 R >> /S /P << endobj /P 1350 0 R /Pg 49 0 R >> >> /K [ 61 ] endobj 750 0 obj /Pg 54 0 R endobj 475 0 obj 146 0 obj /Type /StructElem endobj 532 0 obj endobj /S /P /S /P << endobj /Pg 57 0 R /Pg 63 0 R /K [ 14 ] /P 1215 0 R /Type /StructElem >> /K [ 106 ] /QuickPDFF0d6a673b 40 0 R /P 913 0 R /K [ 1 ] /S /P /Pg 49 0 R >> /S /TD 296 0 obj /S /P /K [ 775 0 R ] (2019) Stochastic Dynamic Analysis of an Offshore Wind Turbine Structure by the Path Integration Method. /Pg 57 0 R endobj << endobj /P 511 0 R /Type /StructElem endobj 1184 0 obj /K [ 594 0 R ] endobj /Type /StructElem 1053 0 obj /Pg 49 0 R /Pg 63 0 R /K [ 30 ] 1372 0 R 1374 0 R 1376 0 R 1378 0 R 1380 0 R 1382 0 R 1384 0 R 1385 0 R 1496 0 R /Pg 44 0 R /P 956 0 R endobj << /P 210 0 R /Type /StructElem endobj /K [ 841 0 R ] /S /TD /Pg 57 0 R endobj endobj 448 0 obj << endobj >> /K [ 111 ] /Pg 63 0 R /S /TD /Pg 63 0 R endobj /S /H2 /Pg 49 0 R /S /P /P 72 0 R endobj /Pg 49 0 R >> /P 1442 0 R << endobj << << /P 72 0 R /P 72 0 R /K [ 67 ] /K [ 1423 0 R ] /Type /StructElem 764 0 obj /P 880 0 R /K [ 943 0 R ] << /K 106 1447 0 obj /Pg 57 0 R endobj << << >> << /Type /StructElem /Type /StructElem /P 1247 0 R /S /TR /S /P 735 0 R 737 0 R 738 0 R 741 0 R 743 0 R 745 0 R 747 0 R 749 0 R 751 0 R 753 0 R 754 0 R /S /TD << /Pg 54 0 R >> /S /P << /S /Span >> endobj endobj << /K [ 585 0 R ] /K [ 36 ] /Pg 63 0 R 1117 0 obj /K [ 1336 0 R ] /Pg 63 0 R << endobj